Day 7, Assignment

1. Go back and look at Assignment 6, Problem 1 ... the problem where we had a couple links loaded with a force $P = 10k$ that was oriented down and to the right, you were to calc the deflection of point P, and so on. Now take that same problem and (without the 10k acting on it) ... impose a displacement of P exactly 0.0055 in. straight to the right. Now, determine: a) the force applied to P that would be necessary to cause such a displacement (mag and direction), and b) the corresponding stiffness of the system with respect to such a displacement. Discuss: is your answer similar or dissimilar to Assn 6 Prob 1???

2. 2.4-9 ... except don't do part a) (unless you really want to) ... do do part b) ... and let's add a part c), namely, if $L = 6$ in., find the displacement of the plate (load point). Just glancing at this - I would assume that P is the whole force, even though there are actually two P each with an arrow.

3. 2-4-15 ... this problem has a ** ... I hope it isn't too hard.
Okay, let's look at the elongation of each piece...

\[s_{AB} = 0.0055 \text{ in} \]

\[\text{piece } AB \]

\[\text{AB just elongates the } \]
\[0.0055 \text{ in} \]

\[\text{piece } BC \ldots \text{ and B swings} \]

\[s_{BC} = 0.0055 \text{ in} \times \sin 30^\circ \]
\[= 0.00275 \text{ in} \]

Now let's calc the P's necessary to do that...
0.0055 in $= \frac{P_{AB}}{9.3 \times (18 \text{ in}) \frac{\text{in}^2}{2.25 \text{ in}^2} (29 \times 10^6 \text{ lb}) \frac{\text{in}^2}{1 \text{ in}^2}}$

Earlier Solution

\[P_{AB} = \frac{0.0055 \text{ in}}{18 \text{ in}} \frac{2.25 \text{ in}^2}{1 \text{ in}^2} 29 \times 10^6 \text{ lb} = \]

\[= \frac{19.938 \text{ lb}}{} \rightarrow \]

Similarly

\[P_{BC} \]

\[0.00275 \text{ in} = \frac{P_{BC}}{36 \text{ in}} \frac{\text{in}^2}{3.14 \text{ in}^2} (29 \times 10^6 \text{ lb}) \frac{\text{in}^2}{1 \text{ in}^2} \]

\[P_{BC} = \frac{0.00275 \times (3.14) (29 \times 10^6 \text{ lb})}{36} \]

\[= 6956 \text{ lb} \uparrow \]

Now let's add the P's.
\[\varepsilon F_x = P_x \quad \vdots \]
\[19.94 \text{k} + 6.96 \cos 60^\circ = 23.4 \text{k} = \varepsilon F_x \]
\[\varepsilon F_y = P_y \]
\[6.96 \text{k} \sin 60^\circ = 6.03 \text{k} = P_y \]
\[P = \sqrt{(23.4)^2 + (6.03)^2} = 24.2 \text{k} \]
\[\theta = \tan^{-1} \frac{6.03}{23.4} = 14.4^\circ \]
\[\rho = 24.2 \text{k} \angle 14^\circ \]

Stiffness
\[k = \frac{P}{\varepsilon} = \frac{24.2 \text{k}}{0.0055 \text{in}} = 4400 \text{ lb/in} \]

In this orientation, the stiffness is different than the assignment 6 situation.
2.4-9 Find stresses in the steel and aluminum, and, also, S for $L = 6 \text{ in}$...

\[P = 12 \text{k} \]

\[A_{\text{steel}} = 1.03 \text{ in}^2 \]
\[A_{\text{alum}} = 8.92 \text{ in}^2 \]
\[E_{\text{alum}} = 10 \times 10^6 \text{ psi} \]
\[E_{\text{steel}} = 29 \times 10^6 \text{ psi} \]

Strategy: To move the load point, we will have to flange the steel and compress the aluminum. This is a parallel bar problem... stiffness of system equals sum of stiffnesses of each.

Solution: Let's do it...

\[K_{\text{alum}} = \frac{AE}{L} = \frac{8.92 \text{ in}^2 \times 10 \times 10^6 \text{ psi}}{12 \text{ in}} = 7,433,333 \frac{\text{lb}}{\text{in}} \]
\[k_{steel} = \frac{1.63 \times 10^6}{6} = 497833.3 \text{ lb/in} \]

\[k_{equiv} = k_{al} + k_{st} = 12,411,667 \text{ lb/in} \]

and now...

\[P = k_5 \]
\[S = \frac{P}{k} = \frac{12,411,667 \text{ lb}}{12,411,667 \text{ lb/in}} = 1 \text{ in} \]

\[S = 0.00097 \text{ in} \]

Now let's call the stresses in each... Load goes to stiffness...

So...

\[P_{alum} = \frac{P_{total}}{k_{equiv}} \times k_{alum} = 12,120 \text{ lb} \times \frac{7.433}{12,411} = 7.187 \text{ k} \]

\[P_{alum} = 7.187 \text{ k} \]

\[\sigma_{alum} = \frac{P}{A} = \frac{7.187 \text{ k}}{8.92 \text{ in}^2} = 806 \text{ psi} \]

\[P_{steel} = P - P_{alum} = 12 \text{ k} - 7.187 \text{ k} = 4.813 \text{ k} \]

\[\sigma_{steel} = \frac{4.813}{1.03} = 4.673 \text{ ksi} = 4673 \text{ psi} \]
\[\sigma_{\text{alum}} = 806 \text{ psi} \quad (810) \]

\[\sigma_{\text{steel}} = 4670 \text{ psi} \quad (4700 \text{ psi}) \]

ops. gang! I read the problem wrong... I assumed ONE P. ... and there are TWO... But, no problem... we'll assume we're in the linear elastic range...

\[\delta = 2 \times 0.00047 \text{ in} = 0.00094 \text{ in} \]

\[\sigma_{\text{alum}} = 2 \times 806 = 1612 = 1610 \text{ psi} \quad \text{Compression} \]

\[\sigma_{\text{steel}} = 2 \times 4670 = 9340 = 9340 \text{ psi} \quad \text{Tension} \]

Now, let's check...

\[P_{\text{steel}} = 2 \times 4.813 = 9.626 \text{ lb} \]

\[\delta_{\text{steel}} = \frac{P_l}{AE} = \frac{9626 \text{ (6 in)}}{1.03 \text{ in}^2 \times 29 \times 10^6 \text{ lb}} = \]

\[= 0.00193 \text{ in} \]

Yeah!
Given: Rigid bar with wires with $E = 30 \times 10^6$ psi... and $A = .0272$ in2 each.

Find: a) Stresses in wires and
 b) displacement of end B

Strategy: Let's relate the f's via geometry...

Then relate the forces to one another via the geometry and stiffness of the wires...

Then a moment equation to relate the forces...

And hopefully solve...

Solution

Geometry

\[\delta_P = \frac{50}{20} \delta_C = 2.5 \delta_C \]

\[\delta_{13} = \frac{60}{20} \delta_C = 3.3 \delta_C \]
\[\delta_c = \frac{P_c L_c}{A_c E_c} \]

\[\delta_c = \frac{P_c \left(18.1^2 \right)}{0.0272 \frac{1}{\text{in}^2} \times 30 \times 10^6 \frac{\text{lb}}{\text{in}^2}} = \frac{P_c 0.000022 \text{ in}}{15} \]

\[\delta_d = \frac{P_d L_d}{A_d E_d} = \frac{P_d 36 \text{ in}}{0.0272 \frac{1}{\text{in}^2} \times 30 \times 10^6 \frac{\text{lb}}{\text{in}^2}} \]

\[\delta_d = \frac{P_d 0.000044 \text{ in}}{15} \]

Let's relate one force in terms of the other through the \(\delta \)'s:

\[\delta_d = 2.5 \delta_c \]

\[P_d 0.000044 \frac{\text{in}}{15} = 2.5 \left(0.000022 \frac{P_c}{\text{in}} \right) \]

\[P_d = P_c 2.5 \left(\frac{22}{44} \right) = 1.25 P_c \]
Now let's take a moment Equation

\[3 \frac{M}{A} = 0 \]

\[\begin{align*}
\epsilon &= 0 \\
Ax &= 0 \\
Ay &= 0 \\
P_c &= 1.25 P_c \\
340 &= 13
\end{align*} \]

\[-20 P_c - 50 (1.25 P_c) + 340 (66) = 0 \]

\[P_c = \frac{340 \times 66}{20 + 1.25 \times 50} \text{ lb/in} \]

\[P_c = 272 \text{ lb} \]

\[P_D = 1.25 P_c = 1.25 \times 272 = 340 \text{ lb} \]

Stress

\[\sigma_c = \frac{272 \text{ lb}}{0.0272 \text{ in}^2} = 10,000 \text{ psi} \]

\[\sigma_D = \frac{340 \text{ lb}}{0.0272} = 12,500 \text{ psi} \]

and now for \(\delta_B \)...
\[\delta_c = P_c \left(0.00022 \left(\frac{\text{in}}{15} \right) \right) \]
\[= 272 \text{ lb} \times 0.00022 \left(\frac{\text{in}}{15} \right) = \]
\[= 0.005984 \text{ in} \]

\[\delta_{13} = 3.3 \delta_c = 3.3 \times 0.005984 = \]
\[\delta_{13} = 0.0197 \text{ in} \]

Answers.

\[\sigma_c = 10,000 \text{ psi, Tension} \]
\[\sigma_{13} = 12,500 \text{ psi, Tension} \]
\[\delta_B = 0.020 \text{ in} \]