1. The 20-ft pole is acted upon by an 840-lb force as shown. It is held by a ball and socket at A and by the two cables BD and BE. Neglecting the weight of the pole, determine the tension in each cable. **Full credit for this problem is given only if there is a correct Free Body Diagram (FBD).** The FBD may be a separate diagram or clearly marked and labeled forces/reactions superimposed on the figure given below.
1. The 20-ft pole is acted upon by an 840-lb force as shown. It is held by a ball and socket at A and by the two cables BD and BE. Neglecting the weight of the pole, determine the tension in each cable. **Full credit for this problem is given only if there is a correct Free Body Diagram (FBD).** The FBD may be a separate diagram or clearly marked and labeled forces/reactions superimposed on the figure given below.

![Diagram](image)

\[\overrightarrow{BD} = 12\hat{x} - 14\hat{y} - 12\hat{z} \quad \overrightarrow{BD} = 22 \]

\[\overrightarrow{BE} = 12\hat{x} - 14\hat{y} + 12\hat{z} \quad \overrightarrow{BE} = 22 \]

\[\overrightarrow{T_{BD}} = \frac{T_{BD}}{22} (12\hat{x} - 14\hat{y} - 12\hat{z}) = \frac{T_{BD}}{22} (4\hat{x} - 7\hat{y} - 6\hat{z}) \]

\[\overrightarrow{T_{BE}} = \frac{T_{BE}}{22} (6\hat{x} - 7\hat{y} + 6\hat{z}) \]

\[2\overrightarrow{M_A} = 0 = 2(\overrightarrow{r} \times \overrightarrow{F}) = 2 \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ r_x & r_y & r_z \\ F_x & F_y & F_z \end{vmatrix} \]

\[0 = \begin{vmatrix} -j & k \\ 0 & 20 & 0 \\ -840 & 0 & 0 \end{vmatrix} + \frac{T_{BD}}{22} \begin{vmatrix} -j & k \\ 0 & 14 & 0 \\ 6 & -7 & -6 \end{vmatrix} + \frac{T_{BE}}{22} \begin{vmatrix} -j & k \\ 0 & 14 & 0 \\ 6 & -7 & 6 \end{vmatrix} \]

\[0 = (20)(-840) + \frac{14T_{BD}}{22} \begin{vmatrix} -4\hat{x} - 6\hat{z} \\ 10 & 0 & 0 \\ 6 & -7 & -6 \end{vmatrix} + \frac{14T_{BE}}{22} \begin{vmatrix} 6\hat{x} - 6\hat{z} \\ 10 & 0 & 0 \\ 6 & -7 & 6 \end{vmatrix} \]

\[2 \text{ x coeff} = 0 = -6(14T_{BD}) + 6(14T_{BE}) \]

\[T_{BD} = T_{BE} \] (Continued)
\[2k \text{ coeff} = 0 = (-20)(-840) - \frac{6(14)T_{BD} - (6)(14)T_{BE}}{11} \]

\[0 = 16,800 - T_{BD} \left[\frac{(6)(14)}{11} + \frac{(6)(14)}{11} \right] \]

\[T_{BD} = \frac{16,800}{\frac{11}{(6)(14) + (6)(14)}} \]

\[T_{BD} = 1,100.00 \text{ lb} \]

\[T_{BE} = 1,100.00 \text{ lb} \]

\[\text{NOT REQUIRED, BUT FOR THE FUN OF IT, FIND REACTIONS AT A,} \]

\[\sum F = 0 = -840 \overrightarrow{\text{c}} + \overrightarrow{T_{BD}} + \overrightarrow{T_{BE}} + \overrightarrow{A} \]

\[0 = -840 \overrightarrow{\text{c}} + \frac{1,100}{11} (6 \overrightarrow{\text{i}} - 7 \overrightarrow{\text{j}} - 6 \overrightarrow{\text{k}}) + \frac{1,100}{11} (6 \overrightarrow{\text{i}} - 7 \overrightarrow{\text{j}} + 6 \overrightarrow{\text{k}}) + A \overrightarrow{\text{x}} + A \overrightarrow{\text{y}} \]

\[\sum \overrightarrow{\text{c}} = 0 = 840 + 600 + 600 + A \overrightarrow{\text{x}} \]

\[A \overrightarrow{\text{x}} = 840 - 1200 = -360 = 360.00 \text{ lb} \]

\[\sum \overrightarrow{\text{y}} = 0 = -700 - 700 + A \overrightarrow{\text{y}} \]

\[A \overrightarrow{\text{y}} = 1400.00 \text{ lb} \uparrow \]

\[\sum \overrightarrow{\text{z}} = 0 = -600 + 600 + A \overrightarrow{\text{z}} \]

\[A \overrightarrow{\text{z}} = 0.00 \text{ lb} \]
1. The 20-ft pole is acted upon by an 840-lb force as shown. It is held by a ball and socket at A and by the two cables BD and BE. Neglecting the weight of the pole, determine the tension in each cable.

Full credit for this problem is given only if there is a correct Free Body Diagram (FBD). The FBD may be a separate diagram or clearly marked and labeled forces/reactions superimposed on the figure given below.

Using \(\vec{T}_{AE} = 12\hat{z} + 12\hat{k} \) although I would use \(\vec{T}_{AB} = 14\hat{y} \)

\(\vec{BE} = 12\hat{x} - 14\hat{y} + 12\hat{k} \)

\(\vec{C} = -840\hat{z} \)

\(\vec{T}_{AC} = 20\hat{y} \)

\(\Sigma M_{AD} = 0 = \frac{12(20)(840)}{16.97} \begin{vmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{vmatrix} + \frac{12(12)T_{BE}}{16.97(11)} \begin{vmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 6 & 7 & 6 \end{vmatrix} \)

\[0 = (20)(840)(-1)(1) + \frac{12T_{BE}}{11} \begin{bmatrix} (1)(7) - (1)(-7) \end{bmatrix} \]

\[(20)(840) = \frac{12T_{BE}}{11} [7 + 7] \]

\[T_{BE} = \frac{(20)(840)(11)}{(12)(14)} = 1100, 000 \text{ lb} \]
2. Determine the total surface area of the body shown. Pappus & Guldinus theorems must be at least a part of your solution.
2. Determine the total surface area of the body shown.

Revolve 3 lines 180°

\[L_1 = 50 \]
\[L_2 = \sqrt{60^2 + 70^2} \]
\[L_2 = 92.20 \]
\[L_3 = \sqrt{60^2 + 20^2} \]
\[L_3 = 63.25 \]

\[SA = \frac{2 \pi \Sigma \bar{x} \times L}{2} = \frac{\pi \times \Sigma \bar{x} \times L}{2} \]
\[= \pi \left[(65)(50) + (55)(92.20) + (30)(63.25) \right] \]
\[= 10,218.12 \pi \]
\[= 32,101.16 \text{ mm}^2 \]

This gives total area of II, III, & 5

Area of end triangles is \[2 \left[\frac{1}{2} (50)(60) \right] = 3,000 \text{ mm}^2 \]

Total \[SA = 32,101.16 + 3,000 = 35,101.16 \text{ mm}^2 \]

OR \[\sqrt{50} \approx 92.20 \]

From \[A = \sqrt{s(s-a)(s-b)(s-c)} \] where \[s = \frac{1}{2}(a+b+c) \]
\[A = \sqrt{2,250,282.18} \]
\[A = 1500.99 \]
\[2A = 3000.19 \]
3. **DO EITHER 3A OR 3B**

3A. Determine by direct integration \bar{x} of the area shown.

![Diagram of a region with equation $y = b \left(1 - kx^3\right)$]

3B. A thin homogenous wire is bent to form the perimeter of the figure indicated. Locate the center of gravity of the wire figure thus formed.

![Diagram of a wire figure with dimensions 20 mm, 30 mm, 36 mm, and 24 mm]
3. **DO EITHER 3A OR 3B**

3A. Determine by direct integration x of the area shown.

\[y = b \left(1 - kx^3\right) \]

\[
\begin{align*}
\bar{x} \sum L &= \frac{\sum x L}{\sum L} = \frac{10 \times 200 + 35 \times 160.15 + 24 \times 1050 + 12 \times 480 + 0 \times 200 + 30 \times 1800}{200.86} \\
&= \frac{3,570.15}{200.86} = 17.77 \text{ mm}
\end{align*}
\]

\[
\begin{align*}
\bar{y} \sum L &= \frac{\sum y L}{\sum L} = \frac{5,976.18}{200.86} = 29.75 \text{ mm}
\end{align*}
\]

3B. A thin homogenous wire is bent to form the perimeter of the figure indicated. Locate the center of gravity of the wire figure thus formed.

\[
\begin{align*}
\bar{x} \sum L &= \frac{\sum x L}{\sum L} = \frac{3,570.15}{200.86} = 17.77 \text{ mm}
\end{align*}
\]

\[
\begin{align*}
\bar{y} \sum L &= \frac{\sum y L}{\sum L} = \frac{5,976.18}{200.86} = 29.75 \text{ mm}
\end{align*}
\]
3A. Determine by direct integration \bar{x} of the area shown.

\[@ y = 0, x = 2 \]
\[0 = b(1 - k\alpha^3) \]
\[1 - k\alpha^3 = 0 \]
\[k = \frac{1}{\alpha^3} \]

\[\therefore y = b \left(1 - \frac{x^3}{\alpha^3} \right) \text{ is our equation.} \]

\[dA = y \, dx \]

\[\bar{x} \int dA = \int \bar{x} \, dA \quad \text{and} \quad \bar{x} = \frac{\int_{0}^{\alpha} x \, y \, dx}{\int_{0}^{\alpha} y \, dx} \]

\[\bar{x} = \frac{\int_{0}^{\alpha} x \, b \left(1 - \frac{x^3}{\alpha^3} \right) \, dx}{\int_{0}^{\alpha} b \left(1 - \frac{x^3}{\alpha^3} \right) \, dx} = \frac{\int_{0}^{\alpha} x \left(1 - \frac{x^3}{\alpha^3} \right) \, dx}{\int_{0}^{\alpha} \left(1 - \frac{x^3}{\alpha^3} \right) \, dx} \]

\[\bar{x} = \frac{\int_{0}^{\alpha} x \, dx - \int_{0}^{\alpha} \frac{x^4}{\alpha^3} \, dx}{\int_{0}^{\alpha} \, dx - \int_{0}^{\alpha} \frac{x^3}{\alpha^3} \, dx} = \frac{x^2 \int_{0}^{\alpha} - \frac{x^5 \int_{0}^{\alpha}}{\alpha^3}}{\frac{x^2 \int_{0}^{\alpha} - \frac{x^4 \int_{0}^{\alpha}}{\alpha^3}} \frac{4\alpha^3}{4} = \frac{3\alpha^2}{10} \]

3B. A thin homogenous wire is bent to form the perimeter of the figure indicated. Locate the center of gravity of the wire figure thus formed.

\[@ x = 0, y = b \]
\[b = b \left[1 - k(\alpha^3) \right] \]
\[b = b \quad \text{YEP}, \]

\[\text{but we learn nothing of the constant from this.} \]